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Confidence in prediction by neural networks

Liat Ein-Dor and Ido Kanter
Minerva Center and Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 17 August 1998

The idea that a trained network can assign a confidence number to its prediction, indicating the level of its
reliability, is addressed and exemplified by an analytical examination of a perceptron with discrete and con-
tinuous output units. Results are derived for both Gibbs and Bayes scenarios. The information gain by the
confidence number is estimated by various entropy measurerf8t663-651X99)06606-4

PACS numbeps): 87.10+e, 84.35+i, 02.50~r, 05.20-~y

Statistical physics methods have contributed greatly to théndicate the level of its reliability. In general, the confidence
theory of learning in recent yeaf$—3]. Analytical methods number can take any value in a definite range. However, it is
were developed to investigate the learning of a rule frommore convenient to give a probabilistic interpretation to the
randomized data by large neural networks. The quality of th¢onfidence number, and hence, the natural rang@,13. In
learning is measured by the averaged generalization err@tich a case the reliability of the answer is represented by the
that quantifies the average amount of disagreement betwe&@nfidence number, a probability between zero and 1. The
the student the trained network, and known rules. average confidence number is nothing else bukd, where

There are basically two lines of approach in the investi-€g is the average generalization error.
gation of the task of learning a rule from random examples. In this paper we would like first to address and then to
In the first approach, known as a batch learning, the exexamine analytically on some limited architectures, the fol-
amples are stored and can be provided at any given momel@wing questions(i) Can one assign for each input a differ-
of the learning process. For a given training set, the learningnt confidence number, such that in some of the questions
trail gains from the quenched fluctuations in the exampleghe confidence number is greater or smaller than the the av-
provided, and therefore the analytical treatment is based o@rage confidence number;—%kg? (i) What are the param-
the replica methofi2]. The second line of research concernseters of the questioriinput) which cause the confidence
the physics of so-called on-line learning procesgisand ~ number to be above or below the averaged diigfAWhat is
was initiated in Refs[5,6]. From a practical point of view, the quantitative interplay between these parameters and the
on-line learning is particularly attractive since it uses onlyresulting confidence number®) How does one measure
the latest example from the training set. This obviously re-qualitatively the information gain by assigning a different
duces the storage needs in comparison with memory basg@nfidence number for each input? And does the information
batch prescriptions. Furthermore, this property makes it posgain depend on the architecture of the network or the pre-
sible to investigate analytically a variety of on-line learning scription of the learning®) Can the dependence of the con-
scenarios, where the learning dynamics is described exactfidence number on the “quality” of the input be extended to
in terms of coupled differential equatiofig]. the case of continuous output units? A similar idea was pre-

In both learning scenarios the major analytical activityviously addressed and examined to improve the learning pro-
concentrates on the study of teacher and student networleess. The generalization error is reduced by rejecting ex-
with the same architecture and with continuous adjustabl@mples that lie within a given neighborhood to the decision
weights; the size of the input N and the size of the training boundary, namely, examples with low reliabilitg].
set(number of random exampleis defined byaN; see[2] In order to simplify the discussion, the above-mentioned
and references therein. The generalization error, the averagglestions are addressed and examined within the framework
amount of disagreement between the teacher and student pg-a realizable learning rule, where both teacher and student
dictions on a new example, was found to scasymptoti- have the same prototypical architecture, a perceptron with a
cally with 1/ for binary output units and to scale @s® for ~ binary output unit. Thé\ input units ar S} i=1, 2, ... N,
networks with continuous output unif$,?2]. and the weights of teacher and student are defined respec-

The traditional question in the learning theory is to findtively by {W;} and{J;}. The output of the teacher, for in-
the learning prescription which minimizesymptoticallthe  stance, is given by
generalization error or maximizes the similarity between the
student and the teacher in the case of a realizable learning N
rule. In this paper we address _and _examine th_e following out= sgr‘( E Wisi)-
orthogonal question. A network is trained by a given learn- i=1
ing algorithm on a set of random examples, the training set.

A new question(a new inpu} is then presented, where it is . . . .
clear thgtadeterministic 2tudent givgs a well-defined answeTh'S_ architecture is gxtendAed Iﬁter to a perceptron _W'th a
(an outpul. A practical question one may now ask is, to whatcontinuous output unit, oetO(Z;-;W;S), where for sim-
extent can we rely on the student’s answer? More precisel;F?“C't)A’ of discussion we choose the common activation func-
a confidence number must be assigned to each answer tion O=tanh.

@
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FIG. 1. e4(hs) vs the positive field of the studeht, Eq.(3), for

R=0.6 and 0.8. The horizontal lines are the values of the averageld FIG.dZ.hThe entrozy (_ier(ijv?d frohm %(.ﬁﬁ),.bS(fg), \fr? (solid i
generalization erroe,, Eq. (2). ine) and the entropy derived from the distribution of the generali-

zation error as a function of the local fields of the student (Bj.
S eq(h)], vs R (dashed ling At R=0 both entropies are equal to

For a perceptron with a binary output unit and randomln 2" Inset: the ratics e(h)}/S(e;) VS R

inputs, Eq.(1), the generalization error of the student de-

pends only orR=W-J/[W]|J] [2], and is given explicitly It is now clear that we can do better than the average

by confidence number. For a student who develops a similarity
(R>0) with the teacher, inputs with larde with high prob-

) 2 ability also haveh,>0, and their confidence number is

™ higher than the average one, whereligr-0 the confidence

e . i L number is 1/2. The values of lardgge and the exact confi-
In a similar spirit, one can define ttaveragegeneralization  jance numbers as a function lof andR are given by Egs.
error for an input that induces a local fidid==,J;S; on the 2)—(4).

output of the student. Note that the average is over all pos- e quantitative measure of the information gain by using

sible teachers obeying an overlRowvith a given stud_ent. In" 4 confidence number as a functiontef, 1 eg(hg), can be

such a case and where the output of the studeftlisone  geqyced from a comparison between the entropy of the an-

can find explicitly[2,8] swers (outputg of the student which is averaged over an
infinite number of random questiorimputs

® 1
S[eg(h)]=—f_ \/Edhe(_hzlz){eg(h)ln[eg(h)]
where erfck)=2/\/= ~ exp(—x?). Note that the fraction of

such inputs withhg in the case of random inputs is +[1—eg(h)]In[1—€4(M) ]} 5)
exp(—h%/2)/\27 and for a negative output of the teacher
one has to replade,— |hy| in Eq. (3). A typical result fore,
and e,(h) for h>0 andR=0.6,0.8 is presented in Fig. 1. It __ _ _
is clear thatey(0)=1/2 is independent oR, since an or- Sleg)=~LegIn(eg) +(1-€g)n(1—eg)], ©
thogonal input to the weights of the studedt, does not wheree, andey(h) are given as a function d&® by Egs.(2)
contain any information regarding the local field of the gnd(3). Results forS(ey) and S ey(h)] as a function oR
teacher, which is an unbiased Gaussian. Hence, the sign gfe presented in Fig. 2, where it is clear that the two curves
the output of the student is uncorrelated with the output okhould coincide aR= 0,1 where independent bf(#0), the
the teacher. Similarlyeq(h) is a decreasing function ®®  confidence number is 1/2,1. Clearly, a lower entropy indi-
(>0), since for agiven inputwith hs andR, the probability  cates a better knowledge regarding the teacher’s outputs.
that the local field of the teacher Ig is Although asR—1 both S(eg), S e4(h)]1—0, see Fig. 2,
the information gain can be deduced from the rate of the
P(h/he.R)= / 1 o (h-RhY22(1-R?) @ convergence of the entropies to zero. In the inset of Fig. 2,
tso 2m(1-R?) : the ratio betweer§| €4(h) 1/S(€g) versusR is calculated nu-
merically from Eqgs.(5) and(6). It is clear that the informa-
The center of the Gaussian, E@l), is at Rhy, and it tion gain increases witR, and asymptotically aR—1 one
increases withhg and therefore the weight of the negative can show that
tail, the error, decreases. Similarly, for a givien the gen-
eralization error decreases wikhsince the standard devia- Seo(h)]/S(en) = 4C\T _ 2C\mw o
tion of the Gaussian/1— R?, decreases witR. 9 9 |In(1-R)| In(a)

eg(hg) = %erfc[RhS/\/Z(l—Rz)], ®)

and the entropy of the averaged confidence number
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where  C=—[{[xInx+(1-x)In(1-x)]dy~0.638,  x 1.0
=0.5 erfcfy) and the last equality is derived from the
asymptotic generalization error for the Gibbs ca

~0.62/x [2]. The decreasing [ e4(h) [/S(€g) With R, is a

result of the behavior oéy(h), Eq. (5), indicating that aR 4=0.01
increases, roughly speaking, the inputs can be split into two
classes. In the first class with>O(y1— R?), the generali- S
zation error is almost zero<{ey), whereas in the second 05
classhs< O(\/1—R?) the generalization error is close to 1/2.

In such a developed bimodal distribution as a functiofiRpf

the width of the distribution of the generalization error
around the averagey, increases and similarly the informa-

tion gain increases.

The above-mentioned results can apply also to the Bayes
algorithm[2], where the main idea is to use the distribution %00 05 10
of the splitting of the normalized version space by a new R
input toy and 1-y (for details, see Eq24) in Refs.[9] and
[2]). The average entropg.ye{ €;). iS given again by Eq.
(6), but eg=cos*1(\/§)/7r instead of Eq(2), and e4(y)=y
for y=<1/2[2]. Similar to the Gibbs entropies, Eq®) and
(6), one can show that
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FIG. 3. The entropies for a perceptron with a continuous output
unit. S(eg) [EQ. (6)], vsR (solid lineg andS[ e4(h)] [Eq. (5], vsR
(dashed lines

puts areexactlythe same, we will find that the probability for
2 12 , , such an event is zero for af# 1. A more practical defini-
Sgayed €9(Y) 1=~ —f dye 2179 tion for an agreement is that the output of the studemiois
YJo too far from that of the teacher. Following E(L0), a natural
X[yIny+(1—-y)in(1—y)], way to define an agreement with an ertoiis

where y=R/(1—R) andt is determined through the rela- l[tank(W-S)—tanr(JS)]ng (11)
tion y=0.5erfcty/\/2). One can show now that asymptoti- 4 ’

call =—yJ1-RIn(1-R)/27~0.44In(@)/a and

S, y S[Sfa(yﬁ)ﬁz)zc A-R/ \/F(~2\/);0724C/a (a)FCljrther— whereA is a given parameter that can be fixed, for instance,
mc?ryg, gsymptotically one can find thaggyed eg(h) ]/ by the required resolution of the user. From Etfl) one can

Spayed €5) = 2C/m/In(a) and find that
SBayei Eg(y)] :SBayes(Eg) _ %" ® h;<ht<h; , (12
Scivod €g(N)] Scibes(€g) 062 with hy =tanh tanhfi)=2A]. The generalization error
which may indicate a universal property. for a givenhs andA is then given by
It is interesting now to extend these conceptgh) and 1
S ey4(h)], to a perceptron with a continuous output unit that 1—ey(hg) = E[erfc(Hs_)—erfc(Hs*)], (13)

is more realistic in many learning tasks,

(X where HS = (hf —Rhs/Q?)/y2(1-R%Q?) and the aver-
out=0 .21 WS |, (9  aged generalization error is given bye,=1/
- 2
V2w fdhe "s2¢ (hy). Similar to Egs.(5) and(6), one can
9
where we concentrate on the common chofoestanh. The  define the entropies3(eg) and S ey(h)]. Results of these

averaged generalization error is defined by two entropies as a function dre[0:1] for Q=1 and for
some typical values oA are presented in Fig. 3. Note that

1 2 for some values of\, the entropy does not monotonically
€=\ | z[tan(W-S)—tanhJ-5)]%) ), (10 gecrease withR, as was found for binary output units, a
result which requires an explanation. For learning with bi-
where((- - -)) stands for the average over the input spacenary units, the generalization error is alwagd/2, since in
The generalization error can be expressed as a function éfie worst case one can choose a random ouigsitfor R
two order parameters as was defined earlier, and we as- =0).
sume now thaf{W||=1 and the additional order parameter In the case of continuous units one should distinguish
Q=|J|| measuring the length of the weights of the studentbetween two different scenarios. In the first scenario, similar
Note that althougheye[0:1], it does not have an interpre- to the binary case, for a givel andR=0 the student knows
tation of a probability. with a probability =1/2 the “true” answer of the teacher.
The main question now is to find a criterion for an agree-Hence, aR increases, both the generalization error and the
ment between the student and the teacher. If we adopt a striehtropy decreases toward zero. In the second scenario, the
measure that the two networks “agree” only when their out-student knows a@R= 0 with probability>1/2 that his answer
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is “wrong,” which is the case whera is small enough. In 1.0 P

such a learning process, &increasesg, first decreases (sth(h) 2 ,,z”’

toward 1/2 and the entropy increases towards In(2).RAs 2 /’

increases beyond that point, both the entropy @ndecay to 08 | \ e i

zero. A similar scenario holds @ e4(h) ] but the value is il —

lower than In(2). o6 | /7 A |
Results for a perceptron with a continuous output unit can®® ° V/ l

be developed further. Assume that the averaged agreemer

A, between teacher and student is required, for instance, b' 04 / .

the user. On some inputs of the student with local fieldve

count the answer to be correct although the difference squar

[see Eq.(11)] between the teacher and student outputs is 0.2 ]

large, A(hg)>A, where with other inputs we have a more

restricted criterion for a correct answér(hg)<A. This glo- 0.0 ‘ ‘

bal constraint can be summarized for the case of randon 00 1.0 h 2.0 3.0

inputs by
FIG. 4. The optimalA(h) vs h for A=0.5. The dashed line

[1+tanhf)]¥4, indicates the upper bound far(h), where g4(h)
=0.

- - e—h2/2
A= f dh A(h). (14
_dh—=A4(h)

_ _ _ _ S €4(h)]~0.0098. These numbers should be compared with
It is clear that this global constraint does not uniquely deterthe enhancement of the entropies after the optimization of
mine the function ofA (h). The question raised now is to find A(h), as presented in Fig. 3. The results a@pe(g)]
the best criterion for an agreemeriore precisely, the best ~0.0018 and§[ €4(h)]~0.0017, which are around five
criterion is the one that minimizes the entropy with respect tdimes smaller than the entropies before the optimization. For

all possible distributions oA (h). Hence, one has to mini- smaller values of\, the optimalA(h) decreases with posi-

mize Eq.(5) under the global constraiiil4). A trivial solu-
tion with zero entropy always exists. Fdrge[ —o;hg]
A(h)=0 such thateg=1 and for hge[hg;] A(h)=[1
+tanhf)]%4 such thaiey=0. However, since we would like

tive h and will be discussed elsewhere.

All of the above-mentioned concepts and results can be
generalized for multilayered networks; however, the equa-
tions are more involved and will be discussed elsewhere.

to maximize the agreement between teacher and studentievertheless, we would like to conclude with a result for a

A(hy) is bounded such that;[ A(h)]<1/2 for all hs. The
minimization of Eq.(5) under constrain{l4) was carried out
by the Monte Carlo method. In Fig. 4 results fbth), which
minimizes the entropy under the global constraint tAat
=0.5, are presented fdi>0, whereA(—h)=A(h). The
curve[1+tanhf)]?/4 represents the upper bound fb¢h),
which giveseq(h)=0. For smallh, A(h) is chosen such that
€g is almost 0 and increases with For A(h)=A, the en-
tropies obtained from Eq$6) and(5) are S(ey) ~0.011 and

committee machine with nonoverlapping receptive fields and
with K hidden units. If the overlap between the weights of
the teacher and that of the student for each one of the hidden
units is equal toR, one can show thaSy n[€4(h)]/
Suin({€g}) = (1—R)*~D?|log(1-R)|, which indicates an
enhancement in comparison to the perceptron case.
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