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Confidence in prediction by neural networks

Liat Ein-Dor and Ido Kanter
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 17 August 1998!

The idea that a trained network can assign a confidence number to its prediction, indicating the level of its
reliability, is addressed and exemplified by an analytical examination of a perceptron with discrete and con-
tinuous output units. Results are derived for both Gibbs and Bayes scenarios. The information gain by the
confidence number is estimated by various entropy measurements.@S1063-651X~99!06606-4#

PACS number~s!: 87.10.1e, 84.35.1i, 02.50.2r, 05.20.2y
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Statistical physics methods have contributed greatly to
theory of learning in recent years@1–3#. Analytical methods
were developed to investigate the learning of a rule fr
randomized data by large neural networks. The quality of
learning is measured by the averaged generalization e
that quantifies the average amount of disagreement betw
the student, the trained network, and known rules.

There are basically two lines of approach in the inve
gation of the task of learning a rule from random exampl
In the first approach, known as a batch learning, the
amples are stored and can be provided at any given mom
of the learning process. For a given training set, the learn
trail gains from the quenched fluctuations in the examp
provided, and therefore the analytical treatment is based
the replica method@2#. The second line of research concer
the physics of so-called on-line learning processes@4# and
was initiated in Refs.@5,6#. From a practical point of view
on-line learning is particularly attractive since it uses on
the latest example from the training set. This obviously
duces the storage needs in comparison with memory b
batch prescriptions. Furthermore, this property makes it p
sible to investigate analytically a variety of on-line learni
scenarios, where the learning dynamics is described exa
in terms of coupled differential equations@7#.

In both learning scenarios the major analytical activ
concentrates on the study of teacher and student netw
with the same architecture and with continuous adjusta
weights; the size of the input isN and the size of the training
set ~number of random examples! is defined byaN; see@2#
and references therein. The generalization error, the ave
amount of disagreement between the teacher and studen
dictions on a new example, was found to scaleasymptoti-
cally with 1/a for binary output units and to scale ase2a for
networks with continuous output units@1,2#.

The traditional question in the learning theory is to fi
the learning prescription which minimizesasymptoticallythe
generalization error or maximizes the similarity between
student and the teacher in the case of a realizable lear
rule. In this paper we address and examine the follow
orthogonal question. A network is trained by a given lea
ing algorithm on a set of random examples, the training
A new question~a new input! is then presented, where it i
clear that a deterministic student gives a well-defined ans
~an output!. A practical question one may now ask is, to wh
extent can we rely on the student’s answer? More precis
a confidence number must be assigned to each answ
PRE 601063-651X/99/60~1!/799~4!/$15.00
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indicate the level of its reliability. In general, the confiden
number can take any value in a definite range. However,
more convenient to give a probabilistic interpretation to t
confidence number, and hence, the natural range is@0,1#. In
such a case the reliability of the answer is represented by
confidence number, a probability between zero and 1.
average confidence number is nothing else but 12eg , where
eg is the average generalization error.

In this paper we would like first to address and then
examine analytically on some limited architectures, the f
lowing questions:~i! Can one assign for each input a diffe
ent confidence number, such that in some of the quest
the confidence number is greater or smaller than the the
erage confidence number, 12eg? ~ii ! What are the param
eters of the question~input! which cause the confidenc
number to be above or below the averaged one?~iii ! What is
the quantitative interplay between these parameters and
resulting confidence number?~iv! How does one measur
qualitatively the information gain by assigning a differe
confidence number for each input? And does the informa
gain depend on the architecture of the network or the p
scription of the learning?~v! Can the dependence of the co
fidence number on the ‘‘quality’’ of the input be extended
the case of continuous output units? A similar idea was p
viously addressed and examined to improve the learning
cess. The generalization error is reduced by rejecting
amples that lie within a given neighborhood to the decis
boundary, namely, examples with low reliability@8#.

In order to simplify the discussion, the above-mention
questions are addressed and examined within the framew
of a realizable learning rule, where both teacher and stud
have the same prototypical architecture, a perceptron wi
binary output unit. TheN input units are$Si% i 51, 2, . . . ,N,
and the weights of teacher and student are defined res
tively by $Wi% and $Ji%. The output of the teacher, for in
stance, is given by

out5sgnS (
i 51

N

WiSi D . ~1!

This architecture is extended later to a perceptron with
continuous output unit, out5Ô(( i 51

N WiSi), where for sim-
plicity of discussion we choose the common activation fun
tion Ô5tanh.
799 ©1999 The American Physical Society
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For a perceptron with a binary output unit and rando
inputs, Eq.~1!, the generalization error of the student d
pends only onR5W•J/iWiiJi @2#, and is given explicitly
by

eg5
cos21~R!

p
. ~2!

In a similar spirit, one can define theaveragegeneralization
error for an input that induces a local fieldhs5( iJiSi on the
output of the student. Note that the average is over all p
sible teachers obeying an overlapR with a given student. In
such a case and where the output of the student is11, one
can find explicitly@2,8#

eg~hs!5
1

2
erfc@RhS /A2~12R2!#, ~3!

where erfc(x)[2/Ap*x
` exp(2x2). Note that the fraction of

such inputs with hs in the case of random inputs i
exp(2hs

2/2)/A2p and for a negative output of the teach
one has to replacehs→uhsu in Eq. ~3!. A typical result foreg
andeg(h) for h.0 andR50.6,0.8 is presented in Fig. 1.
is clear thateg(0)51/2 is independent ofR, since an or-
thogonal input to the weights of the student,J, does not
contain any information regarding the local field of th
teacher, which is an unbiased Gaussian. Hence, the sig
the output of the student is uncorrelated with the output
the teacher. Similarly,eg(h) is a decreasing function ofR
(.0), since for agiven inputwith hs andR, the probability
that the local field of the teacher isht is

P~htuhs ,R!5A 1

2p~12R2!
e2(ht2Rhs)

2/2(12R2). ~4!

The center of the Gaussian, Eq.~4!, is at Rhs , and it
increases withhs and therefore the weight of the negativ
tail, the error, decreases. Similarly, for a givenhs , the gen-
eralization error decreases withR since the standard devia
tion of the Gaussian,A12R2, decreases withR.

FIG. 1. eg(hs) vs the positive field of the studenths , Eq.~3!, for
R50.6 and 0.8. The horizontal lines are the values of the avera
generalization erroreg , Eq. ~2!.
-
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It is now clear that we can do better than the avera
confidence number. For a student who develops a simila
(R.0) with the teacher, inputs with largehs with high prob-
ability also haveht.0, and their confidence number
higher than the average one, where forhs→0 the confidence
number is 1/2. The values of largehs and the exact confi-
dence numbers as a function ofhs andR are given by Eqs.
~2!–~4!.

The quantitative measure of the information gain by us
a confidence number as a function ofhs , 12eg(hs), can be
deduced from a comparison between the entropy of the
swers ~outputs! of the student which is averaged over a
infinite number of random questions~inputs!

S@eg~h!#52E
2`

` A 1

2p
dhe(2h2/2)$eg~h!ln@eg~h!#

1@12eg~h!# ln@12eg~h!#% ~5!

and the entropy of the averaged confidence number

S~eg!52@eg ln~eg!1~12eg!ln~12eg!#, ~6!

whereeg andeg(h) are given as a function ofR by Eqs.~2!
and ~3!. Results forS(eg) and S@eg(h)# as a function ofR
are presented in Fig. 2, where it is clear that the two cur
should coincide atR50,1 where independent ofhs(Þ0), the
confidence number is 1/2,1. Clearly, a lower entropy in
cates a better knowledge regarding the teacher’s outputs

Although asR→1 bothS(eg), S@eg(h)#→0, see Fig. 2,
the information gain can be deduced from the rate of
convergence of the entropies to zero. In the inset of Fig
the ratio betweenS@eg(h)#/S(eg) versusR is calculated nu-
merically from Eqs.~5! and ~6!. It is clear that the informa-
tion gain increases withR, and asymptotically asR→1 one
can show that

S@eg~h!#/S~eg!5
4CAp

u ln~12R!u
5

2CAp

ln~a!
~7!

ed FIG. 2. The entropy derived from Eq.~6!, S(eg), vs R ~solid
line! and the entropy derived from the distribution of the genera
zation error as a function of the local fields of the student Eq.~5!,
S@eg(h)#, vs R ~dashed line!. At R50 both entropies are equal t
ln 2. Inset: the ratioS@eg(h)#/S(eg) vs R.
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where C52*0
`@x ln x1(12x)ln(12x)#dy;0.638, x

50.5 erfc(y) and the last equality is derived from th
asymptotic generalization error for the Gibbs caseeg
;0.62/a @2#. The decreasing ofS@eg(h)#/S(eg) with R, is a
result of the behavior ofeg(h), Eq. ~5!, indicating that asR
increases, roughly speaking, the inputs can be split into
classes. In the first class withhs.O(A12R2), the generali-
zation error is almost zero (!eg), whereas in the secon
classhs,O(A12R2) the generalization error is close to 1/
In such a developed bimodal distribution as a function ofR,
the width of the distribution of the generalization err
around the average,eg , increases and similarly the informa
tion gain increases.

The above-mentioned results can apply also to the Ba
algorithm @2#, where the main idea is to use the distributi
of the splitting of the normalized version space by a n
input toy and 12y ~for details, see Eq.~24! in Refs.@9# and
@2#!. The average entropy,SBayes(eg), is given again by Eq.
~6!, but eg5cos21(AR)/p instead of Eq.~2!, andeg(y)5y
for y<1/2 @2#. Similar to the Gibbs entropies, Eqs.~5! and
~6!, one can show that

SBayes@eg~y!#52
2

gE0

1/2

dye2(t2/2)(12g2)

3@y ln y1~12y!ln~12y!#,

whereg5AR/(12R) and t is determined through the rela
tion y50.5 erfc(tg/A2). One can show now that asympto
cally SBayes(eg)52A12R ln(12R)/2p;0.44 ln(a)/a and
SBayes@eg(h)#52CA12R/Ap;2Ap0.44C/a. Further-
more, asymptotically one can find thatSBayes@eg(h)#/
SBayes(eg)52CAp/ ln(a) and

SBayes@eg~y!#

SGibbs@eg~h!#
5

SBayes~eg!

SGibbs~eg!
5

0.44

0.62
, ~8!

which may indicate a universal property.
It is interesting now to extend these concepts,eg(h) and

S@eg(h)#, to a perceptron with a continuous output unit th
is more realistic in many learning tasks,

out5ÔS (
i 51

N

WiSi D , ~9!

where we concentrate on the common choice,Ô5tanh. The
averaged generalization error is defined by

eg5 K K 1

4
@ tanh~W•S!2tanh~J•S!#2L L , ~10!

where ^^•••&& stands for the average over the input spa
The generalization error can be expressed as a functio
two order parameters;R as was defined earlier, and we a
sume now thatiWi51 and the additional order paramet
Q5iJi measuring the length of the weights of the stude
Note that althoughegP@0:1#, it does not have an interpre
tation of a probability.

The main question now is to find a criterion for an agre
ment between the student and the teacher. If we adopt a s
measure that the two networks ‘‘agree’’ only when their o
o

es

t

.
of

t.

-
ict
-

puts areexactlythe same, we will find that the probability fo
such an event is zero for anyRÞ1. A more practical defini-
tion for an agreement is that the output of the student isnot
too far from that of the teacher. Following Eq.~10!, a natural
way to define an agreement with an errorD is

1

4
@ tanh~W•S!2tanh~J•S!#2<D, ~11!

whereD is a given parameter that can be fixed, for instan
by the required resolution of the user. From Eq.~11! one can
find that

hs
2,ht,hs

1 , ~12!

with hs
65tanh21@tanh(hs)62AD#. The generalization erro

for a givenhs andD is then given by

12eg~hs!5
1

2
@erfc~Hs

2!2erfc~Hs
1!#, ~13!

where Hs
65(hs

62Rhs /Q2)/A2(12R2/Q2) and the aver-
aged generalization error is given byeg51/
A2p*dhse

2hs
2/2eg(hs). Similar to Eqs.~5! and ~6!, one can

define the entropies,S(eg) and S@eg(h)#. Results of these
two entropies as a function ofRe@0:1# for Q51 and for
some typical values ofD are presented in Fig. 3. Note tha
for some values ofD, the entropy does not monotonicall
decrease withR, as was found for binary output units,
result which requires an explanation. For learning with
nary units, the generalization error is always<1/2, since in
the worst case one can choose a random output~as for R
50).

In the case of continuous units one should distingu
between two different scenarios. In the first scenario, sim
to the binary case, for a givenD andR50 the student knows
with a probability>1/2 the ‘‘true’’ answer of the teacher
Hence, asR increases, both the generalization error and
entropy decreases toward zero. In the second scenario
student knows atR50 with probability.1/2 that his answer

FIG. 3. The entropies for a perceptron with a continuous out
unit. S(eg) @Eq. ~6!#, vs R ~solid lines! andS@eg(h)# @Eq. ~5!#, vs R
~dashed lines!.
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802 PRE 60LIAT EIN-DOR AND IDO KANTER
is ‘‘wrong,’’ which is the case whereD is small enough. In
such a learning process, asR increases,eg first decreases
toward 1/2 and the entropy increases towards ln(2). AR
increases beyond that point, both the entropy andeg decay to
zero. A similar scenario holds forS@eg(h)# but the value is
lower than ln(2).

Results for a perceptron with a continuous output unit c
be developed further. Assume that the averaged agreem
D̄, between teacher and student is required, for instance
the user. On some inputs of the student with local fieldhs we
count the answer to be correct although the difference sq
@see Eq.~11!# between the teacher and student outputs
large, D(hs).D̄, where with other inputs we have a mo
restricted criterion for a correct answer,D(hs),D̄. This glo-
bal constraint can be summarized for the case of rand
inputs by

D̄5E
2`

`

dh
e2h2/2

A2p
D~h!. ~14!

It is clear that this global constraint does not uniquely de
mine the function ofD(h). The question raised now is to fin
the best criterion for an agreement. More precisely, the bes
criterion is the one that minimizes the entropy with respec
all possible distributions ofD(h). Hence, one has to mini
mize Eq.~5! under the global constraint~14!. A trivial solu-
tion with zero entropy always exists. ForhsP@2`;h0#
D(h)50 such thateg51 and for hsP@h0 ;`# D(h)5@1
1tanh(h)#2/4 such thateg50. However, since we would like
to maximize the agreement between teacher and stud
D(hs) is bounded such thateg@D(h)#<1/2 for all hs . The
minimization of Eq.~5! under constraint~14! was carried out
by the Monte Carlo method. In Fig. 4 results forD(h), which
minimizes the entropy under the global constraint thatD̄
50.5, are presented forh.0, whereD(2h)5D(h). The
curve @11tanh(h)#2/4 represents the upper bound forD(h),
which giveseg(h)50. For smallh, D(h) is chosen such tha
eg is almost 0 and increases withh. For D(h)5D̄, the en-
tropies obtained from Eqs.~6! and~5! areS(eg);0.011 and
te
n
nt,
by

re
is

m

r-

o

nt,

S@eg(h)#;0.0098. These numbers should be compared w
the enhancement of the entropies after the optimization
D(h), as presented in Fig. 3. The results areS@e(g)#
;0.0018 andS@eg(h)#;0.0017, which are around five
times smaller than the entropies before the optimization.
smaller values ofD̄, the optimalD(h) decreases with posi
tive h and will be discussed elsewhere.

All of the above-mentioned concepts and results can
generalized for multilayered networks; however, the eq
tions are more involved and will be discussed elsewhe
Nevertheless, we would like to conclude with a result fo
committee machine with nonoverlapping receptive fields a
with K hidden units. If the overlap between the weights
the teacher and that of the student for each one of the hid
units is equal toR, one can show thatSMLN@eg(h)#/
SMLN($eg%)}(12R)(K21)/2/u log(12R)u, which indicates an
enhancement in comparison to the perceptron case.

We thank W. Kinzel and M. Opper for fruitful discus
sions. I.K. acknowledges the partial support of the Isr
Academy of Science.

FIG. 4. The optimalD(h) vs h for D̄50.5. The dashed line
@11tanh(h)#2/4, indicates the upper bound forD(h), whereeg(h)
50.
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